Breakout Magnetics: How Far Can We Take the Next Generation of Components

Weyman Lundquist

President and CEO West Coast Magnetics

ISO9001:2008 ISO13485 Registered

Where do Losses Come From? Typical 1500 W Transformer, 250 kHz

Core cross sectional area (Ae)

Core Loss: 4Winding Loss:Total Loss: 7Watts3 WattsWatts

west coast magnetics

Efficiency 99.5%!

Effective Use of Available Volume

Current Typical ETD49

New Design

Full Cube = $L \times W \times H = 101 \text{ cm}3$ Watts/cm3 = 11.2 *

Full Cube = $L \times W \times H = 91 \text{ cm}3$ Watts/cm3 = 16.5 *

* Power rating based on constant temperature rise design same core and winding technology used for each device.

Improvement Available Today = 47%

west coast

magnetics

What is the Potential for Improved Packaging?

% of Total Device Cube That is Core Volume and Winding Volume Only

Improvements to 80% or higher will be possible with improved insulating materials and better use of existing materials.

Core Losses

$$B = \frac{E_{rms}(10^8)}{4.44A_eNf}$$

Where:

B = peak AC flux density (gauss) $E_{rms} = \text{rms primary voltage}$ $A_{e} = \text{core area, (cm^{2})}$ N = number of primary turnsf = operating frequency

magnetics

Conclude: we want to decrease the product of Ae and N or increase the product of B and F without increasing core loss density.

What Does the Future Hold for Improved Core Materials?

Source: Ferroxcube, Core Loss at 1 kGauss, 100 kHz

What Core Materials are Being Chosen for Today's Designs

The presenter is certain that many new designs use core materials from 10+ old releases

Improvement available today: 50%

Improvement Available Today – More Efficient Packaging and Lower Loss Core

Full Cube = $L \times W \times H = 101 \text{ cm}3$ Watts = 2400 at 100 kHz Watts/cm3 = 23.7

Full Cube = $L \times W \times H = 91 \text{ cm}3$ Watts = 4300 at 100 kHz Watts/cm3 = 47.3

IMPROVEMENT 2.0 times power density

What About the Effect of Increasing the Operating Frequency?

Device Size vs. Frequency – State of the Art Today

10 Year Forecast

38% overall reduction in device volume

Operating frequency will increase more quickly at 10% per year. This will result in an additional 30% reduction in device volume.

Conclude: we can expect a decrease in device volume or increase in power density of at least 50% over the next 10 years as a result of better core materials and increased operating frequencies.

Thank you for your time

Weyman Lundquist, President

West Coast Magnetics 4848 Frontier Way, Ste 100 Stockton, CA 95215

www.wcmagnetics.com

800-628-1123

ISO9001:2008 ISO13485 Registered

west coast magnetics