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Abstract— Existing advanced and powerful techniques for opti-
mizing litz-wire winding designs are complex and usually require
using multiple expensive software packages. A new CAD tool has
been created to make advanced litz-wire design methods available
to any designer through an easy-to-use web interface. The software
performs two-dimensional field simulations and returns designs
optimized considering cost and loss. It is shown that simple full-
bobbin designs, compared to optimized choices, can result in much
higher loss with almost no cost advantage or much higher cost with
almost no loss advantage, whereas the optimization results provide
a full range of choices providing the lowest loss at any given cost
or the lowest cost at any given loss.

I. INTRODUCTION

W INDING losses in magnetic components operated at high

frequency in power converters can severely limit perfor-

mance and prevent size and cost reductions. Litz wire can be

used to reduce high-frequency losses, but design with litz wire is

difficult; a poor litz-wire design can easily have higher loss than

a simple solid-wire design [1], [2]. Thus, to realize the potential

benefits of litz wire, it is essential to do careful design analysis.

There is a rich body of literature on litz wire analysis and

optimization techniques [2]-[8]. However, the more advanced

and powerful techniques that have been developed are complex

enough that they do not invite use by practicing engineers for

routine work. General-purpose software for analyzing electro-

magnetic fields using finite element analysis or other techniques is

readily available from many vendors, but it has several severe lim-

itations for litz-wire design. Firstly, analyzing the eddy currents

within thousands of small strands requires orders of magnitude

more memory and computation time than typical problems do,

and so remains impractical on standard computers. Secondly,

a numerical solution provides information about the losses in

one design, but does not directly provide information on how to

improve the design. Because the litz-wire user can choose from

a vast array of strand sizes and numbers of strands, it is difficult

to locate a good design simply by trying different possibilities.

We have created software that implements some of the most

advanced and powerful recently published litz-wire design meth-

ods in easy-to-use software. The full capabilities are available in

software that can be downloaded at no charge from our website,

in the MATLAB programming language [9]. A version with most

of the capabilities is being made available directly through a web

interface. Users of this version need no software other than a

web browser and can work from any platform; the calculations

are performed on the web server [22].

This work was supported in part by the United States Department of Energy
under grant DE-FC36-01GO1106

The method chosen for implementation is the approach in [10].

It uses the squared-field-derivative (SFD) method [11] to handle

different nonsinusoidal waveforms in each winding, properly

accounting for mutual resistance effects [12]. The SFD method

also handles two-dimensional (2-D) or three-dimensional (3-D)

field effects, by combining analytical modeling of the strand-

level eddy-current loss effects with numerical calculations of the

overall field shapes. In [10], the SFD method is combined with a

cost analysis of litz wire [2] in order to optimize a particular

flyback transformer. We have taken the method used for this

example in [10] and implemented a general-purpose version of

it in easy-to use software. For the convenience of the reader,

the method in [10] is reviewed in detail in Appendix I. A brief

overview of the method is provided in Section I-A.

Because the SFD method [11] entails the use of a numerical

field solution, an easy-to-use software tool must have that capabil-

ity built in. Section II describes the 1-D and 2-D field solutions

that are included in both versions of our software. Section III

describes the MATLAB implementation, and Section V describes

the web-based version.

A. Analysis and Optimization Approach

The SFD method is a generalized version of an approach to

nonsinusoidal waveforms that has been widely used [8], [13],

[14], [15]. It is based on the dependence of losses on the squared

derivative of the field, (dB
dt

)2. With a uniform field within a

conducting cylinder (such as an individual strand in a litz-wire

winding), instantaneous power dissipation P (t) in a wire of

length ℓ is given by

P (t) =
πℓd4

c

64ρc

(

dB

dt

)2

, (1)

where B is the flux density, assumed perpendicular to the axis of

the cylinder, ρc is the resistivity of the wire, and dc is its diameter

[11]. The assumption of uniform field is valid when the diameter

of a strand is small compared to a skin depth. For most well

designed litz-wire windings, this is the case. For applications with

a wide spectrum of frequencies, either because of strong high-

frequency current harmonics or because of a large low-frequency

or dc current component, good designs may have wire that is large

compared to a skin depth for the highest frequency content. In

such cases, the SFD method will be conservative; actual loss will

be somewhat smaller than predicted.

Given the dependence of loss on (dB
dt

)2, and given that B is a

linear function of the current in different windings, it is possible

to account for the losses resulting from these different currents
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using a “dynamic loss matrix” D [11]

Peddy =
[

di1
dt

di2
dt

]

D

[

di1
dt
di2
dt

]

. (2)

The matrix D is calculated, independent of current waveforms,

using a series of simplified magnetostatic field simulations—

one for each winding excited alone, and one for each possible

pair of windings. The accuracy of the SFD method has been

experimentally verified in [11].

In [10], it is shown that this method of calculating losses can

be used as the basis for finding the optimal number and diameter

of strands in a litz-wire winding, similar to the optimization in

[2], but valid for arbitrary geometries and current waveforms. As

shown in [8], it is essential to consider cost in litz-wire optimiza-

tion, because the minimum-loss design, considered independent

of cost, typically uses prohibitively expensive constructions with

many extremely fine strands. On the other hand, simple rule-

of-thumb approaches to choosing strand diameter can result in

higher loss and higher cost than an optimized design [2], or

even higher loss than simple single-strand windings [1]. Thus,

the optimization is necessary.

As shown in [2], [10] and reviewed in the appendix, consid-

ering cost and loss results in a set of possible designs that can

be plotted as in Fig. 1. Each of the designs on this curve—the

optimal design frontier—gives the lowest cost at a given loss

(and the lowest loss at a given cost). The designer must then

choose a cost/loss tradeoff appropriate for a particular application.

The optimal design frontier can be expressed in terms of a cost

function Cm(dc) which gives cost per unit mass as a function

of strand diameter, its derivative C ′

m(dc), and an eddy current

loss factor Fe, analogous to the ac resistance factor Fr, but

defined as the ratio of the actual winding losses Pw to the losses

expected based on dc resistance, Pr, to facilitate accounting for

waveforms with both ac and dc components: Fe = Pw

Pr
. Given

these definitions, the optimal design frontier can be shown to

satisfy [10]

Fe,CL(dc) = 1 +
1

1 − 2Cm(dc)
C′

m(dc)dc

. (3)

This result can be used with (2) to solve for the other param-

eters of the optimal designs and find their loss, as detailed in

Appendix I and in [10]. The cost function Cm may be the curve

fit to manufacturers’ quotes as in [2], or a new curve-fit may

be substituted to represent updated prices from a given supplier.

This method has been experimentally verified in [10].

II. MAGNETIC FIELD CALCULATIONS

In order to apply the method described in Section I-A, it

is necessary to perform a set of simple magnetostatic field

calculations. In [10], these calculations were performed with

commercial finite-element software. The relevant field quantities

were transcribed for use in the optimization. This approach is not

compatible with our objective of making software that is easily

available to any designer, and that is easy to use. We wished to

make optimization available for users who do not have access
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Fig. 1. An example of the optimal design frontier produced by LitzOpt. The
solid line represents the best buildable designs with a circle indicating the even
AWG sizes. To the left of the minimum loss design (near AWG 44), these designs
provide the lowest loss at any given cost or the lowest cost for any given loss. The
dash-dot curve shows the hypothetical optimal designs which ignore the space
constraints imposed by the bobbin window.

to expensive finite-element software packages, and we wished to

avoid the tedious process of running several different programs

and transfering data to obtain a solution. Thus, we developed

numerical field solutions as part of our software. The user has

the option to use a simpler 1-D solution or a 2-D solution that

takes into account the 2-D effects that result from air gaps in the

core or unusual winding layouts.

A. One-Dimensional Magnetic Field Calculations

For 1-D solutions, a simple MMF-diagram approach [16]

is used to evaluate the field. The quantities needed for the

SFD method (the average of B2 over each winding) have been

calculated analytically for a variety of different configurations

which may be selected by the user.

B. Two-Dimensional Magnetic Field Calculations

The method of images [17] is well suited to analysis of the

magnetic field in a rectangular winding window of an ungapped,

high-permeability core, considered in two dimensions [18], [19].

Since each wall of the window can be replaced by an image of

the rest of the geometry, the effect of the core can be modeled by

an infinite set of images of the windings, similar to the images

visible in a room with mirrors on all four walls. The effect of

the images on the field declines with distance, and we find that

a five-by-five grid of images, as shown in Fig. 2, is typically

sufficient for better than 0.05% accuracy.

With the effect of the core removed by imaging, the problem is

reduced to that of finding the field due to a collection of currents.

We address only the case of rectangular current distributions,

as in typical winding shapes, for which we use the closed-form

solution for the field detailed in Appendix II [17], [18].

As derived in [19], the same approach can be used to calculate

the field with a gapped core by replacing the gap with a ribbon

of current on the inside surface of the core. The total current in
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all gap ribbons is set equal and opposite to the total current in

all the windings, such that the net current through the window is

zero (as it must be with the assumption of an infinite-permeability

core).

To find the average value of B2 over a given winding, as

required for the SFD method, the squared field is integrated over

each winding, using a simple rectangular midpoint numerical

integration approach. Even with this crude integration method, the

time required to achieve an accurate solution is competitive with

commercial finite element packages: under five seconds for 0.05%

accuracy for a simple gapped inductor on a 1 GHz Pentium III

machine. The accuracy quoted above is as compared to a finite-

element analysis program running the same 2-D solution using a

very fine mesh. Errors resulting from the use of a 2-D solution

to represent a 3-D device will generally be more significant [20],

[21].

III. MATLAB IMPLEMENTATION

The method as described in Sections I-A and II has been

implemented in a MATLAB program called LitzOpt that may

be freely downloaded from our website [22]. The program’s

graphical user interface prompts the user for some basic data,

and then creates a blank data file with fields for the necessary

geometry and current-waveform data. The program performs field

calculations as described in Section II and implements the opti-

mization approach as described in Section I-A and Appendix I.

The user is provided with a plot of the optimal design frontier,

such as the example in Fig. 1, and a table of wire size, number

of strands, loss, and relative cost for each recommended design.

Each of the designs listed or shown in Fig. 1 provides minimum

cost for a given loss or minimum loss for a given cost. The

user can then select a design according to the cost/loss tradeoff

appropriate for the application under consideration.

The program has the ability to automatically allocate space

for the windings in the winding window using a standard layered

winding configuration. The height of each winding is determined

by

hi =

[

NiIrms,i

ΣNiIrms,i

]

hb, (4)

Original
Winding
Window

Fig. 2. Applying the method of images results in replacing a high-permeability
core with an infinite number of images of the windings in the original winding
window. A system of 24 images plus the original winding window, as shown here,
is found to give better than 0.05% accuracy for typical examples. The ribbon at
the left of the window is used to model the effect of a gap (see text); in practice
it has zero thickness and is all the way at the edge of the window.

where hi is the height of each winding, Ni is the number of

turns in that winding, Irms,i is the RMS current in the winding

and hb is the height of the bobbin window. This allocation would

be the optimum based only on considerations of DC resistance

and ignoring the effect of winding position on turn length. Using

this feature is convenient for the designer not only because it

automatically calculates a good allocation of winding space, but

also because it reduces the amount of data that must be entered

into the program. The user also has the option to fully specify

any desired winding configuration.

To determine what possible stranding designs would fit on

the bobbin, the program uses the maximum achievable packing

factor specified by the user, which indicates the maximum density

of wire that can be obtained in manufacturing the device. The

packing factor, Fp, is the ratio of actual achievable wire packing

relative to the prefect square packing of cylinders, and is defined

as

Fp =
Awi

Aavailable

4

π
, (5)

where Awi is the total cross-sectional area of wire including

copper and insulation but not air space between strands and

Aavailable is the area available for the winding and is equal to

the height of the bobbin window times the breadth of the bobbin

window. The default value for Fp is 0.6, but typical values range

from 0.3 to 0.9 [23]. The determination of the total cross-sectional

area of wire with insulation is taken from [2] and depends on the

size of the wire and insulation build selected by the user.

The program first calculates an optimal design ignoring the

bobbin space constraint. It then checks to see if each optimal

design will fit in the available winding area. If a design fits in

the winding area, then the design is called the best buildable

design. If an optimal design does not fit, the program adjusts

the stranding, resulting in a full-bobbin design that is as close

as possible to the original calculated optimum. The cost and loss

are recalculated for each new design.

A typical output is shown in Fig. 1, but more detail is shown

in Fig. 3. The lowest curve shows the original calculated optimal

designs. For designs to the left of the AWG 38 design, the optimal

designs fit on the bobbin. For AWG 40 designs and those to the

right of this point, the optimal designs do not fit, and a full bobbin

is chosen instead. Fig. 3 also shows the result of selecting a full

bobbin in the region where the optimal design does not fill the

bobbin.

IV. DISCUSSION OF OPTIMIZATION RESULTS

The results in Fig. 3 are for one example design. Depending

on the size of the winding window and other parameters, the

full-bobbin constraints may be more or less important. With a

sufficiently large winding window, all of the optimal designs as

originally calculated without considering the bobbin constraint

will be buildable, and the designer may select from a wide range

of cost/loss tradeoffs along a smooth curve, the lowest curve in

Fig. 3, solid on the left and dash-dot on the right. The best choice

along that curve will depend on the relative importance of initial

cost and loss, as discussed in [2].
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In most cases, however, the original optimal curve will become

hypothetical at some point where the bobbin becomes full, as

happens between AWG 38 and AWG 40 in Fig. 3. Beyond this

critical point, a full bobbin always gives the lowest loss. Using

finer wire continues to reduce eddy-current loss, but dc resistance

starts to increase because insulation constitutes a larger fraction

of the wire cross section for smaller diameter wire. Thus, there

is a tradeoff between dc resistance and eddy-current loss which,

in Fig. 3, first results in the small decrease in loss between AWG

40 and AWG 44, and then results in an slight increase in loss

beyond AWG 44. The point giving minimum loss, near AWG 44

in this case, was found analytically for simple geometries in [8].

However, [8] did not include an analysis of cost. With the cost

analysis included, we see in Fig. 3 that the minimum loss point

analyzed in [8] is not very interesting in practice, because, from

where the optimal designs first fill the bobbin to the minimum

loss design (AWG 40 to AWG 44 in Fig. 3), the loss reduction

is tiny (3% in this case) while the cost increase is large (a factor

of two in this case).

Because designs to the right of the critical point where optimal

designs first fill the bobbin have small loss reductions for large

cost increases, the practical designs that should be considered are

usually just the optimal designs that do not fill the bobbin, up to

the point where they first fill the bobbin (AWG 34 through 40 in

the example shown in Fig. 3.) It is likely that in many cases, the

first optimal design that fills the bobbin will be the best choice,

because up to that point, the curve in Fig. 3 is steep—large loss

reductions are possible with small increases in cost. However,

one must be careful not to condense this conclusion to the idea

that a full bobbin is optimal. The curve of full-bobbin designs

is almost vertical to the left of the critical point, showing losses

skyrocketing with almost no savings in cost. Thus, these full-

bobbin designs are very poor choices that have higher cost and

loss than the alternatives without the bobbin filled.

In Fig. 3, one might choose designs with an underfilled bobbin,
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Fig. 3. Cost vs. loss for optimal and full-bobbin designs, for the same example
as in Fig. 1. The solid black line shows the best buildable designs. The dash-dot
line below this shows optimal designs that will not fit in the winding window
with the given packing factor. The dashed line above the best buildable design
curve shows full bobbin designs that are not optimal.

to the left of the critical point (AWG 40), in order to save on

cost if the loss was not critical. In other situations, the critical

point can be even further to the right, making underfilled bobbins

optimal for even more wire sizes. Even without the full-bobbin

constraint, the optimal design curve flattens out significantly

beyond AWG 44 wire, as a result of the increased cost of

manufacturing finer strands [2]. Thus, in situations where the

critical point is further to the right, choosing an underfilled bobbin

becomes more attractive.

Although we can conclude that an underfilled bobbin will often

be the optimal winding design when cost is considered, that

is no longer the case if we allow varying the core geometry

as well. Given a design with an underfilled bobbin, the core

window height could be shrunk with no penalty in winding loss;

this would provide a reduction in core loss and in cost of core

material. However, for most designs, it is advantageous to stick to

standard core geometries, and such modifications are not available

options.

We conclude that underfilled bobbins will often be the best

practical designs, and that in that region the optimization provides

important guidance to selecting a better design than the disastrous

full-bobbin designs to the left of the critical point in Fig. 3.

The full-bobbin design at the critical point will also often be

the best design in practice, because it is the last point at which

loss reductions can be obtained for a reasonable cost increase.

Again, the optimization is critical in performing this design—

full bobbins with smaller strands provide almost no loss reduction

but greatly increase cost, whereas full bobbins with larger strands

provide almost no cost reduction, but produce a rapid increase in

loss.

V. WEB INTERFACE

In the web-based version, the same MATLAB program runs in

MATLAB on the web server. A web interface system [24] extracts

the data from the html forms submitted by the designer and

delivers the data to LitzOpt. The program calculates the optimal

design frontier as described in Section III and inserts the results

into a web page that is sent back to the user.

The user is guided through the data entry process with a

web-based user interface as shown in Fig. 4. The required

data comprises the following: number of windings; number of

turns, size, and location of each winding; number of gaps, gap

locations and lengths; dimensions of the core and bobbin window;

maximum achieveable packing factor; and winding insulation

build.

Current excitation data is entered as either a piecewise-linear

waveform or as frequency, amplitude, and phase of a sinusoidal

waveform for each winding. The web-based implementation

allows a piece-wise linear current waveform to be broken into 10

time segments for up to 5 different windings; the full MATLAB

version allows any number of windings and any number of time

segments. The user is able to view the current waveform created

from the data entered to confirm that it is as intended.

The field calculation and optimization in the web-based version

is identical to the MATLAB version. Again, the user is provided
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LitzOpt 2D Data Entry
Directions: Enter information requested to optimize a magnetic component with 
a piece-wise linear waveform. For details on each variable, click on the name.

Variable Value Units

Temperature 25 Degrees C

Maximum Achieveable 
Packing Factor

.5  

bw - Breadth of Core Window 0 mm

h - Height of Core Window 0 mm

bb - Breadth of Bobbin Window 0 mm

hb - Height of Bobbin Window 0 mm

Number of Windings 0  

Number of Time Segments 0  

Gap Length 0 mm

Location of Gap

             Both Outer Legs    No Gaps               All Legs Gapped 
      Gapped                         Gapped

Center Leg 

Winding Insulation Build
Single Build Insulation
Heavy Build Insulation

 

Winding Information 
W1 W2 W3 W4 W5

Number of Turns 0 0 0 0 0

Average Length of a Turn 
(mm)

0 0 0 0 0

Time Segments Current      

Microseconds at I (A) I (A) I (A) I (A) I (A)

dt1 0
Start of dt1 0 0 0 0 0

End of dt1
0 0 0 0 0

dt2 0
Start of dt2

End of dt2
0 0 0 0 0

dt3 0
Start of dt3

End of dt3
0 0 0 0 0

dt4 0
Start of dt4

End of dt4
0 0 0 0 0

dt5 0
Start of dt5

End of dt5
0 0 0 0 0

dt6 0
Start of dt6

End of dt6
0 0 0 0 0

dt7 0
Start of dt7

End of dt7
0 0 0 0 0

dt8 0
Start of dt8

End of dt8
0 0 0 0 0

dt9 0
Start of dt9

End of dt9
0 0 0 0 0

dt10 0
Start of dt10

End of dt10 0 0 0 0 0

Submit

Fig. 4. Web-based data entry: The 2-D data-entry page for a piecewise current
waveform. After entering the current data, the user is provided with a waveform
plot for verification.

with a table of possible recommended designs and a plot as in

Fig. 1, this time in the medium of a web page. The user can then

select a cost/loss tradeoff appropriate to the application.

VI. CONCLUSION

New software has been developed to make state-of-the-art litz-

wire design methods easily available to any magnetics designer.

The software is available in two forms: a program that can be

freely downloaded and run in MATLAB, and a web-based system

that runs on the server and may be used from any machine.

The software includes 2-D field analysis based on the method

of images, and can provide 0.05% accuracy field solutions in

seconds. These field solutions are used with the experimentally-

verified methods in [11] and [10] to develop a set of choices for

number of litz-wire strands and strand diameter, each of which

provides minimum loss for a given cost or minimum cost for a

given loss.

A comparison of simple full-bobbin designs to the optimal

options shows the importance of optimization. Although some

optimal designs use a full bobbin, most full-bobbin designs result

in much higer loss with almost no cost advantage or much

higher cost with almost no loss advantage. Having easy-to-use

optimization tools is thus critical to economical and efficient

application of litz wire.
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APPENDIX I

REVIEW OF COST/LOSS OPTIMIZATION METHOD

The analysis of litz wire cost and loss for arbitrary wave-

forms and geometries developed in [10] and implemented in the

software described in this paper is based on extending the 1-D

method for sinusoidal waveforms in [2]. The method in [2] is

based on the ac resistance factor, Fr = Rac/Rdc, which can, for

the simple configurations addressed in [2], be expressed:

Fr = 1 +
kπ2ω2µ2

0N
2n2d6

c

768ρ2
cb

2
c

(6)

where ω is the radian frequency of a sinusoidal current, n is

the number of litz-wire strands, N is the number of turns, dc is

the diameter of the conductor in each strand, ρc is the resistivity

of the conductor, bc is the breadth of the window area of the

core, and k is a factor accounting for field distribution in multi-

winding transformers [23], [8]. To apply a similar approach to

more general situations, [10] introduces a factor Fe, analogous

to Fr, but defined as the ratio of the actual losses to the losses

expected based on dc resistance:

Fe =
Pw

Pr

= 1 +
Pe

Pr

(7)

where Pw is the total power lost in the winding, Pe is the power

lost due to eddy currents, Pr is the loss expected based on

dc resistance (Pr = I2
rmsRdc). Without dc current or mutual

resistance effects, Fe and Fr are equal; (6) is also an expression

for Fe in the simple situations analyzed in [2]. Equation (6)

can be rewritten in terms of the cross-sectional area of a strand

(As = d2
c

π
4 ), as

Fe = 1 + kℓn
2A3

s (8)
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where kℓ represents constant terms of (6) lumped together. The

analysis in [2] can be applied to optimize cost and loss whenever

loss can be expressed in the same form as (8). As shown in [10]

this includes the losses calculated by the SFD method [11].

To put the losses calculated by the SFD method in the form

of (8), [10] writes the power loss due to eddy currents as Pe =
k1nA

2
s and the resistive power loss as Pr = k2(nAs)

−1, lumping

the constants other than n and As into k1 and k2. This results in

Fe = 1 +
k1nA

2
s

k2

nAs

(9)

After simplification, (9) yields (8) with kℓ = k1/k2. This shows

that the cost/loss optimization method discussed in [2] can be

applied to more general situations analyzed by the SFD method

[11]. In order to implement the optimization a value for kℓ must

be calculated.

To find kℓ, one could equate (8) and (7); solving for kℓ yields

kℓ =
Pe

Prn2
jA

3
s

. (10)

This expression could be used to calculate kℓ from a completed

design. However, it is possible, and more often useful, to calculate

the optimal designs without any initial design to work from. In

the next section, we present the calculation of kℓ developed in

[10] that is independent of any particular initial design.

A. Evaluation of kℓ

As shown in [11], Pe can be found by defining a dynamic

resistance matrix, D, containing transformer characteristics. In

the pursuit of finding kℓ for a particular winding (kℓ,j) indepen-

dent of its stranding parameters, [10] defines a modified dynamic

resistance matrix with the stranding parameters n and As factored

out: D̃ = D
njA2

s,j

, and uses only the portion of D̃ associated with

losses in the winding of interest: D̃j. Reference [11] calculates

D in terms of a loss coefficient, γj for each winding j, which

accounts for the influence of the stranding parameters on D. To

remove that influence, [10] defines a modified loss coefficient:

γ̃j =
γj

njA2
s,j

=
ℓw,j

4πρc

. (11)

Here, ℓw is the length of the entire winding, equal to the average

length of a turn multiplied by the number of turns: ℓwNℓt.

One can calculate D̃j from γ̃j and from the results of magne-

tostatic field calculations of the field due to unit current in each

winding [10]. The calculation of D̃ is expressed in terms of the

field due to unit current in winding m, �̂Bm, as

D̃j = γ̃j <







∣

∣

∣

�̂B1

∣

∣

∣

2
�̂B1 · �̂B2

�̂B2 · �̂B1

∣

∣

∣

�̂B2

∣

∣

∣

2






>j (12)

where <>j signifies the spatial average over the region of the

winding j. The eddy current loss in winding j can be related to

the modified dynamic resistance matrix:

Pe,j = njA
2
s,j

[

di1
dt

di2
dt

]

D̃j

[

di1
dt
di2
dt

]

. (13)

The resistive loss can be written

Pr,j = I2
rms,jRdc,j =

I2
rms,jℓw,jρc

njAs,j

. (14)

Now it is possible to obtain kℓ,j using (10) and, as a consequence,

show the independence of kℓ with respect to the number of

strands and their cross-sectional area, by dividing (13) by (14):

kℓ,j =

[

di1
dt

di2
dt

]

D̃j

[

di1
dt
di2
dt

]

I2
rms,jℓw,jρc

. (15)

B. Cost/Loss Optimization

With a value of kℓ calculated, the analysis in [2] can be applied

almost directly to optimize cost and loss. The analysis assumes

that the cost of litz wire can be approximately described by

Cost = (C0 + Cm(dc)d
2
cn)ℓ (16)

where C0 is a base cost per unit length associated with the

bundling and serving operations, Cm(dc) is a cost basis function

proportional to the additional cost per unit mass for a given strand

diameter dc, n is the number of strands, and ℓ is the length of the

wire. For the purpose of optimization with a fixed winding length,

we can ignore C0, and consider only the cost variation which is

proportional to Cm(dc)d
2
cn. In [2], a curve fit to manufacturers’

data finds a function that can be used to approximate Cm(dc)

Cm(dc) = 1 +
k1

d6
c

+
k2

d2
c

(17)

where dc is in meters, k1 = 1.1× 10−26 m6, k2 = 2× 10−9 m2,

and Cm(dc) is normalized to a value of one for large dc.

A solution for the minimum cost at any loss and vice versa is

found in [2]. The solution assumes (16) but, because it can be

expressed in terms of Cm(dc), is valid either for the particular

cost function (17), or for any other Cm(dc) that might be

substituted to represent cost for a particular manufacturer or cost

reduced by a new manufacturing technology. One convenient way

to express the result is in terms of the optimum eddy current loss

factor Fe,

Fe,CL(dc) = 1 +
1

1 − 2Cm(dc)
C′

m(dc)dc

(18)

Given an optimal value of Fe for a given strand size, Fe,CL,

the number of strands can be found from (8), and then the cost

can be found from (16) and the total winding loss can be found

from eddy loss (13) summed with resistive loss (14). If these

calculations are repeated for a range of different strand sizes, a

menu of choices optimized for different cost/loss tradeoffs results.
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APPENDIX II

FIELD DUE TO A RECTANGULAR CURRENT DISTRIBUTION

The field due to a uniform rectangular distribution of current

can be calculated analytically [17], [18]. Consider a rectangular

distribution of current flowing perpendicular to the page, as

shown in Fig. 5. At the point labeled A, the horizontal component

of the field is

Hx = I
8πab

[(y + b)(θ1 − θ2) − (y − b)(θ4 − θ3)

+(x + a) loge

(

r2

r3

)

− (x − a) loge

(

r1

r4

)]

(19)

and the vertical component is

Hy = −I
8πab

[(x + a)(θ2 − θ3) − (x − a)(θ1 − θ4)

+(y + b) loge

(

r2

r1

)

− (y − b) loge

(

r3

r4

)]

(20)

where I is the total current in the rectangular region; x and y are

the coordinates of the measurement point A relative to an origin

at the center of the current region; r and θ are the distances and

angles from the corners of the rectangle to the measurement point

A; and a and b are the half-height and half-width of the current

region. Note that for the angle differences in (20) and (19), the

angles must be specified such that |θi − θj | < π.
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Fig. 5. Coordinates used in calculating the field (at point A) due to a uniform,
rectangular distribution of current (shaded area; current flow is perpendicular to
the page).
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